Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Díez Díaz, et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/177265

GASVeM: A New Machine Learning Methodology for Multi-SNP Analysis of GWAS Data Based on Genetic Algorithms and Support Vector Machines

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Genome-wide association studies (GWAS) are observational studies of a large set of genetic variants in an individual's sample in order to find if any of these variants are linked to a particular trait. In the last two decades, GWAS have contributed to several new discoveries in the field of genetics. This research presents a novel methodology to which GWAS can be applied to. It is mainly based on two machine learning methodologies, genetic algorithms and support vector machines. The database employed for the study consisted of information about 370,750 single-nucleotide polymorphisms belonging to 1076 cases of colorectal cancer and 973 controls. Ten pathways with different degrees of relationship with the trait under study were tested. The results obtained showed how the proposed methodology is able to detect relevant pathways for a certain trait: in this case, colorectal cancer.

Matèries (anglès)

Citació

Citació

DÍEZ DÍAZ, Fidel, SÁNCHEZ LASHERAS, Fernando, MORENO AGUADO, Víctor, MORATALLA NAVARRO, Ferran, MOLINA DE LA TORRE, Antonio josé, MARTÍN SÁNCHEZ, Vicente. GASVeM: A New Machine Learning Methodology for Multi-SNP Analysis of GWAS Data Based on Genetic Algorithms and Support Vector Machines. _Mathematics_. 2021. Vol. 9, núm. 6. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/177265]

Exportar metadades

JSON - METS

Compartir registre