Percolation in Living Neural Networks

dc.contributor.authorBreskin, Ilan
dc.contributor.authorSoriano i Fradera, Jordi
dc.contributor.authorMoses, Elisha
dc.contributor.authorTlusty, Tsvi
dc.date.accessioned2019-06-18T11:41:49Z
dc.date.available2019-06-18T11:41:49Z
dc.date.issued2006-10-30
dc.date.updated2019-06-18T11:41:49Z
dc.description.abstractWe study living neural networks by measuring the neurons' response to a global electrical stimulation. Neural connectivity is lowered by reducing the synaptic strength, chemically blocking neurotransmitter receptors. We use a graph-theoretic approach to show that the connectivity undergoes a percolation transition. This occurs as the giant component disintegrates, characterized by a power law with an exponent β ≃ 0.65 . β is independent of the balance between excitatory and inhibitory neurons and indicates that the degree distribution is Gaussian rather than scale free.
dc.format.extent4 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec601147
dc.identifier.issn0031-9007
dc.identifier.urihttps://hdl.handle.net/2445/135297
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevLett.97.188102
dc.relation.ispartofPhysical Review Letters, 2006, vol. 97, num. 18, p. 188102
dc.relation.urihttps://doi.org/10.1103/PhysRevLett.97.188102
dc.rights(c) American Physical Society, 2006
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationFísica de partícules
dc.subject.classificationExperiments
dc.subject.otherParticle physics
dc.subject.otherExperiments
dc.titlePercolation in Living Neural Networks
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
601147.pdf
Mida:
578.02 KB
Format:
Adobe Portable Document Format