Large images for Galois representations attached to generic modular forms

dc.contributor.advisorDieulefait, L. V. (Luis Victor)
dc.contributor.authorGuiot Cusidó, Miquel
dc.date.accessioned2023-09-21T09:10:18Z
dc.date.available2023-09-21T09:10:18Z
dc.date.issued2023-06-28
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: Luis Victor Dieulefaitca
dc.description.abstract[en] The aim of this project is to study a theorem of Ribet stating that the images of the Galois representations attached to modular forms without Complex Multiplication are large for almost every prime. Firstly, the needed background is introduced in the form of some definitions and basic properties of modular forms and Galois representations. Later, the subgroup classification of general linear groups over finite fields is presented, as well as other useful results from group theory. Finally, Ribet’s theorem is stated and proved using all the tools from algebraic number theory and group theory developed in the previous chapters.ca
dc.format.extent64 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/202092
dc.language.isoengca
dc.rightscc by-nc-nd (c) Miquel Guiot Cusidó, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationFormes modularscat
dc.subject.classificationTeoria de Galoiscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherModular formseng
dc.subject.otherGalois theoryeng
dc.subject.otherMaster's thesiseng
dc.titleLarge images for Galois representations attached to generic modular formsca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfm_miquel_guiot_cusido.pdf
Mida:
608.16 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria