A CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer

dc.contributor.authorBalaguer Montero, María
dc.contributor.authorMorales, Adrià Marcos
dc.contributor.authorLigero Hernández, Marta
dc.contributor.authorZatse, Christina
dc.contributor.authorLeiva Pedraza, David
dc.contributor.authorAtlagich, Luz M.
dc.contributor.authorStaikoglou, Nikolaos
dc.contributor.authorViaplana, Cristina
dc.contributor.authorMonreal, Camilo
dc.contributor.authorMateo Valderrama, Joaquín
dc.contributor.authorHernando Cubero, Jorge
dc.contributor.authorGarcía Alvárez, Alejandro
dc.contributor.authorSalvà, Francesc
dc.contributor.authorCapdevila, Jaume
dc.contributor.authorElez, Elena
dc.contributor.authorDienstmann, Rodrigo
dc.contributor.authorGarralda, Elena
dc.contributor.authorPérez López, Raquel
dc.date.accessioned2025-06-20T11:27:25Z
dc.date.available2025-06-20T11:27:25Z
dc.date.issued2025-03-20
dc.date.updated2025-06-11T13:47:56Z
dc.description.abstractLiver tumors, whether primary or metastatic, significantly impact the outcomes of patients with cancer. Accurate identification and quantification are crucial for effective patient management, including precise diagnosis, prognosis, and therapy evaluation. We present SALSA (system for automatic liver tumor segmentation and detection), a fully automated tool for liver tumor detection and delineation. Developed on 1,598 computed tomography (CT) scans and 4,908 liver tumors, SALSA demonstrates superior accuracy in tumor identification and volume quantification, outperforming state-of-the-art models and inter-reader agreement among expert radiologists. SALSA achieves a patient-wise detection precision of 99.65%, and 81.72% at lesion level, in the external validation cohorts. Additionally, it exhibits good overlap, achieving a dice similarity coefficient (DSC) of 0.760, outperforming both state-of-the-art and the inter-radiologist assessment. SALSA's automatic quantification of tumor volume proves to have prognostic value across various solid tumors (p = 0.028). SALSA's robust capabilities position it as a potential medical device for automatic cancer detection, staging, and response evaluation.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2666-3791
dc.identifier.pmid40118052
dc.identifier.urihttps://hdl.handle.net/2445/221685
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.xcrm.2025.102032
dc.relation.ispartofCell Reports Medicine, 2025, vol. 6, num. 4
dc.relation.urihttps://doi.org/10.1016/j.xcrm.2025.102032
dc.rightscc-by-nc-nd (c) Balaguer Montero et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationCàncer de fetge
dc.subject.classificationAprenentatge profund
dc.subject.classificationClassificació de tumors
dc.subject.otherLiver cancer
dc.subject.otherDeep learning (Machine learning)
dc.subject.otherTumors classification
dc.titleA CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
1-s2.0-S2666379125001053-main.pdf
Mida:
5.15 MB
Format:
Adobe Portable Document Format