Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset

dc.contributor.authorChua, Winnie
dc.contributor.authorEaster, Christina L.
dc.contributor.authorGuasch i Casany, Eduard
dc.contributor.authorSitch, Alice
dc.contributor.authorCasadei, Barabara
dc.contributor.authorCrijns, Harry J.G.M.
dc.contributor.authorHaase, Doreen
dc.contributor.authorHatem Stéphane
dc.contributor.authorKääb, Stefan
dc.contributor.authorMont Girbau, Lluís
dc.contributor.authorSchotten, Ulrich
dc.contributor.authorSinner, Moritz F.
dc.contributor.authorHemming, Karla
dc.contributor.authorDeeks, Jonathan J.
dc.contributor.authorKirchhof, Paulus
dc.contributor.authorFabritz, Larissa
dc.date.accessioned2020-05-29T13:56:10Z
dc.date.available2020-05-29T13:56:10Z
dc.date.issued2019-05-21
dc.date.updated2020-05-29T13:56:11Z
dc.description.abstractBackground: Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate mechanistic insights with known pathophysiological drivers of AF in models predicting recurrent AF and prevalent AF to test hypotheses related to AF mechanisms and response to rhythm control therapy. Methods: We will harmonise and combine baseline and outcome data from 12 studies collected by six centres from the United Kingdom, Germany, France, Spain, and the Netherlands which assess prevalent AF or recurrent AF. A Delphi process and statistical selection will be used to identify candidate clinical predictors. Prediction models will be developed in patients with AF for AF recurrence and AF-related outcomes, and in patients with or without AF at baseline for prevalent AF. Models will be used to test mechanistic hypotheses and investigate the predictive value of plasma biomarkers. Discussion: This retrospective, harmonised, individual patient data analysis will use information from 12 datasets collected in five European countries. It is envisioned that the outcome of this analysis would provide a greater understanding of the factors associated with recurrent and prevalent AF, potentially allowing development of stratified approaches to prevention and therapy management.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec698364
dc.identifier.issn1471-2261
dc.identifier.urihttps://hdl.handle.net/2445/163120
dc.language.isoeng
dc.publisherBioMed Central
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1186/s12872-019-1105-4
dc.relation.ispartofBMC Cardiovascular Disorders, 2019, vol. 19, p. 120
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/633196/EU//CATCH ME
dc.relation.urihttps://doi.org/10.1186/s12872-019-1105-4
dc.rightscc-by (c) Chua, Winnie et al., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationFibril·lació auricular
dc.subject.classificationTerapèutica
dc.subject.classificationMarcadors bioquímics
dc.subject.otherAtrial fibrillation
dc.subject.otherTherapeutics
dc.subject.otherBiochemical markers
dc.titleDevelopment and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
698364.pdf
Mida:
902.2 KB
Format:
Adobe Portable Document Format