Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/215038
Conformal prediction and beyond
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] The role of uncertainty quantification (UQ) has become indispensable with the advent of artificial intelligence and its application to the decision-making. This thesis leverages conformal prediction (CP) as its cornerstone, a pivotal methodology in the field of distribution-free and model-agnostic UQ, which stems from the notion of "conformalizing" predictions to data using the residuals to understand the errors distribution.
In particular, in this work some strategies within the CP approach are theoretically justified, and its guarantees and limitations presented. Even though the CP paradigm was classically applied only under "data exchangeability" conditions, this work also reviews some of the most recent and non-trivial efforts to enable CP when this hypothesis is not fulfilled.
Lastly, to practically demonstrate CP ability to provide prediction intervals with statistically valid coverage, different strategies are successfully applied both to a tabular data regression problem and to a time series forecasting problem.
Descripció
Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Jordi Vitrià i Marca
Matèries (anglès)
Citació
Citació
CASTRO CASTILLO, Gerard. Conformal prediction and beyond. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/215038]