Conformal prediction and beyond

dc.contributor.advisorVitrià i Marca, Jordi
dc.contributor.authorCastro Castillo, Gerard
dc.date.accessioned2024-09-06T10:25:04Z
dc.date.available2024-09-06T10:25:04Z
dc.date.issued2024-06-15
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Jordi Vitrià i Marcaca
dc.description.abstract[en] The role of uncertainty quantification (UQ) has become indispensable with the advent of artificial intelligence and its application to the decision-making. This thesis leverages conformal prediction (CP) as its cornerstone, a pivotal methodology in the field of distribution-free and model-agnostic UQ, which stems from the notion of "conformalizing" predictions to data using the residuals to understand the errors distribution. In particular, in this work some strategies within the CP approach are theoretically justified, and its guarantees and limitations presented. Even though the CP paradigm was classically applied only under "data exchangeability" conditions, this work also reviews some of the most recent and non-trivial efforts to enable CP when this hypothesis is not fulfilled. Lastly, to practically demonstrate CP ability to provide prediction intervals with statistically valid coverage, different strategies are successfully applied both to a tabular data regression problem and to a time series forecasting problem.ca
dc.format.extent57 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/215038
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Gerard Castro Castillo, 2024
dc.rightscodi: AGPL (c) Gerard Castro Castillo, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttps://www.gnu.org/licenses/agpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationIntel·ligència artificial
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationAnàlisi de regressió
dc.subject.classificationTreballs de fi de màster
dc.subject.otherArtificial intelligence
dc.subject.otherMachine learning
dc.subject.otherRegression analysis
dc.subject.otherMaster's thesis
dc.titleConformal prediction and beyondca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfm_castro_castillo_gerard.pdf
Mida:
6.59 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
conformal-prediction-main.zip
Mida:
3.85 MB
Format:
ZIP file
Descripció:
Codi font