Iterated logarithm law for anticipating stochastic differential equations

dc.contributor.authorMárquez, David (Márquez Carreras)
dc.contributor.authorRovira Escofet, Carles
dc.date.accessioned2024-11-18T11:19:04Z
dc.date.available2024-11-18T11:19:04Z
dc.date.issued2007-09-14
dc.date.updated2024-11-18T11:19:04Z
dc.description.abstractWe prove a functional law of iterated logarithm for the following kind of anticipating stochastic differential equations $$ \xi_t^u=X_0^u+\frac{1}{\sqrt{\log \log u}} \sum_{j=1}^k \int_0^t A_j^u\left(\xi_s^u\right) \circ d W_s^j+\int_0^t A_0^u\left(\xi_s^u\right) d s $$ where $u>e, W=\left\{\left(W_t^1, \ldots, W_t^k\right), 0 \leq t \leq 1\right\}$ is a standard $k$ dimensional Wiener process, $A_0^u, A_1^u, \ldots, A_k^u: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ are functions of class $\mathcal{C}^2$ with bounded partial derivatives up to order $2, X_0^u$ is a random vector not necessarily adapted and the first integral is a generalized Stratonovich integral .
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec554240
dc.identifier.issn0894-9840
dc.identifier.urihttps://hdl.handle.net/2445/216550
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s10959-007-0114-x
dc.relation.ispartofJournal of Theoretical Probability, 2007, vol. 21, num.3, p. 650-659
dc.relation.urihttps://doi.org/10.1007/s10959-007-0114-x
dc.rights(c) Springer Verlag, 2007
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationEquacions diferencials estocàstiques
dc.subject.classificationAnàlisi estocàstica
dc.subject.otherStochastic differential equations
dc.subject.otherStochastic analysis
dc.titleIterated logarithm law for anticipating stochastic differential equations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
112735.pdf
Mida:
137.93 KB
Format:
Adobe Portable Document Format