Localizing with respect to self-maps of the circle

dc.contributor.authorCasacuberta, Carles
dc.contributor.authorPeschke, Georg
dc.date.accessioned2016-03-15T10:41:07Z
dc.date.available2016-03-15T10:41:07Z
dc.date.issued1993-09
dc.date.updated2016-03-15T10:41:12Z
dc.description.abstractWe describe a general procedure to construct idempotent functors on the pointed homotopy category of connected $ {\text{CW}}$-complexes, some of which extend $ P$-localization of nilpotent spaces, at a set of primes $ P$. We focus our attention on one such functor, whose local objects are $ {\text{CW}}$-complexes $ X$ for which the $ p$th power map on the loop space $ \Omega X$ is a self-homotopy equivalence if $ p \notin P$. We study its algebraic properties, its behaviour on certain spaces, and its relation with other functors such as Bousfield's homology localization, Bousfield-Kan completion, and Quillen's plus-construction.
dc.format.extent24 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec583754
dc.identifier.issn0002-9947
dc.identifier.urihttps://hdl.handle.net/2445/96481
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-1993-1123451-X
dc.relation.ispartofTransactions of the American Mathematical Society, 1993, vol. 339, num. 1, p. 117-140
dc.relation.urihttp://dx.doi.org/10.1090/S0002-9947-1993-1123451-X
dc.rights(c) American Mathematical Society (AMS), 1993
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria de l'homotopia
dc.subject.classificationÀlgebra homològica
dc.subject.classificationTeoria de grups
dc.subject.classificationTopologia algebraica
dc.subject.otherHomotopy theory
dc.subject.otherHomological algebra
dc.subject.otherGroup theory
dc.subject.otherAlgebraic topology
dc.titleLocalizing with respect to self-maps of the circle
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
583754.pdf
Mida:
2.19 MB
Format:
Adobe Portable Document Format