Gaussian analytic functions in the unit ball

dc.contributor.authorBuckley, Jeremiah
dc.contributor.authorMassaneda Clares, Francesc Xavier
dc.contributor.authorPridhnani, Bharti
dc.date.accessioned2023-01-24T11:44:29Z
dc.date.available2023-01-24T11:44:29Z
dc.date.issued2015-11-03
dc.date.updated2023-01-24T11:44:29Z
dc.description.abstractWe study some properties of hyperbolic Gaussian analytic functions of intensity $L$ in the unit ball of $\mathbb{C}^n$. First we deal with the asymptotics of fluctuations of linear statistics as $L \rightarrow \infty$. Then we estimate the probability of large deviations (with respect to the expected value) of such linear statistics and use this estimate to prove a hole theorem.
dc.format.extent27 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec644427
dc.identifier.issn0021-2172
dc.identifier.urihttps://hdl.handle.net/2445/192551
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s11856-015-1239-8
dc.relation.ispartofIsrael Journal of Mathematics, 2015, num. 209, p. 855-881
dc.relation.urihttps://doi.org/10.1007/s11856-015-1239-8
dc.rights(c) Springer Verlag, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFuncions holomorfes
dc.subject.classificationFuncions de variables complexes
dc.subject.classificationRepresentacions integrals
dc.subject.classificationTeoremes de límit (Teoria de probabilitats)
dc.subject.classificationProcessos gaussians
dc.subject.otherHolomorphic functions
dc.subject.otherFunctions of complex variables
dc.subject.otherIntegral representations
dc.subject.otherLimit theorems (Probability theory)
dc.subject.otherGaussian processes
dc.titleGaussian analytic functions in the unit ball
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
644427.pdf
Mida:
221.23 KB
Format:
Adobe Portable Document Format