Division and extension in weighted Bergman-Sobolev spaces
| dc.contributor.author | Ortega Aramburu, Joaquín M. | |
| dc.contributor.author | Fàbrega Casamitjana, Joan | |
| dc.date.accessioned | 2019-05-06T09:43:33Z | |
| dc.date.available | 2019-05-06T09:43:33Z | |
| dc.date.issued | 1992 | |
| dc.date.updated | 2019-05-06T09:43:33Z | |
| dc.description.abstract | Let D be a bounded strictly pseudoconvex domain of Cn with C 8 boundary and Y = {z; u1(z) = ... = ul(z) = 0} a holomorphic submanifold in the neighbourhood of D', of codimension l and transversal to the boundary of D. In this work we give a decomposition formula f = u1f1 + ... + ulfl for functions f of the Bergman-Sobolev space vanishing on M = Y n D. Also we give necessary and sufficient conditions on a set of holomorphic functions {fa}|a|=m on M, so that there exists a holomorphic function in the Bergman-Sobolev space such that Daf |M = fa for all |a| = m. | |
| dc.format.extent | 23 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 062208 | |
| dc.identifier.issn | 0214-1493 | |
| dc.identifier.uri | https://hdl.handle.net/2445/132716 | |
| dc.language.iso | eng | |
| dc.publisher | Universitat Autònoma de Barcelona | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.5565/PUBLMAT_362B92_08 | |
| dc.relation.ispartof | Publicacions Matemàtiques, 1992, vol. 36, num. 2, p. 837-859 | |
| dc.relation.uri | https://doi.org/10.5565/PUBLMAT_362B92_08 | |
| dc.rights | (c) Universitat Autònoma de Barcelona, 1992 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Espais de Sobolev | |
| dc.subject.classification | Anàlisi funcional | |
| dc.subject.other | Sobolev spaces | |
| dc.subject.other | Functional analysis | |
| dc.title | Division and extension in weighted Bergman-Sobolev spaces | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1