Regressió a la mediocritat, ara i abans

dc.contributor.advisorFortiana Gregori, Josep
dc.contributor.authorAragó i Roca, Júlia
dc.date.accessioned2019-05-13T08:46:34Z
dc.date.available2019-05-13T08:46:34Z
dc.date.issued2019-01-18
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Josep Fortiana Gregorica
dc.description.abstract[en] Regression towards mediocrity is a widely known statistical phenomenon, considered trivial when deeply understood. Regardless of its apparent simplicity, its interpretation seems unclear and continues to confuse people by producing fallacious reasoning. This dissertation begins by showing a historical approach on the issue focusing on the origin of the regression theory and its most related topics: correlation and covariance. Next, the mathematical bases which structure the regression method are shown from a geometrical point of view as well as its probabilistic equivalent. The Least Squares method, along with its historical motivation, is exposed as the most celebrated regression method. After that, a discussion is presented on the subtlety of the regression method, which makes it be considered one of the most reproduced fallacy in the history of economic statistics and data visualization. Moreover, the most mistaken and surprising interpretations that have taken place since its appearance until nowadays are exposed. In order to achieve a good comprehension of the paradox, a simulation is run so the reader can relate the mentioned concepts with empirical data. Finally, the relationship that binds the regression method with latter ones, such as Shrinkage or James-Stein estimator, is introduced. Such methods may be interpreted as an improvement of the regression method. As well as the method’s rigorous explanation and proof, its Galtonian deduction is also referred.ca
dc.format.extent54 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/133013
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Júlia Aragó i Roca, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationAnàlisi de regressióca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationMínims quadratsca
dc.subject.classificationAnàlisi de variànciaca
dc.subject.classificationHistòria de la matemàticaca
dc.subject.otherRegression analysisen
dc.subject.otherBachelor's theses
dc.subject.otherLeast squaresen
dc.subject.otherAnalysis of varianceen
dc.subject.otherHistory of mathematicsen
dc.titleRegressió a la mediocritat, ara i abansca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
735.97 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria