Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Albiol Mosegui, Jordi, 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/133299

Predicting Intensive Care Unit Length of Stay via Supervised Learning

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Healthcare is a traditional sector that is demanding, nowadays, a profound change regarding tasks and ways of work. The explotation of data-based analytical techniques together with computational capabilities are potential candidates to lead part of that demanding change. This can cause an innovation to the sector with considerable social impact. In any case, it is necessary to take into account the specific characteristics of the clinical data: quality, volume, access and multimodality. In this Master Thesis, an analysis of the data from critical patients was carried out in order to study the influence of several observables to determine their Length of Stay in the Intensive Care Unit. Try to solve that problem can help a lot not only the physicians from the mere investigation purposes point of view but also the healthcare sector because Intensive Care Unit logistics counts and it can become very important.

Descripció

Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Tutor: Laura Igual Muñoz

Citació

Citació

ALBIOL MOSEGUI, Jordi. Predicting Intensive Care Unit Length of Stay via Supervised Learning. [consulta: 8 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/133299]

Exportar metadades

JSON - METS

Compartir registre