El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Predicting Intensive Care Unit Length of Stay via Supervised Learning

dc.contributor.advisorIgual Muñoz, Laura
dc.contributor.authorAlbiol Mosegui, Jordi
dc.date.accessioned2019-05-16T13:08:07Z
dc.date.available2019-05-16T13:08:07Z
dc.date.issued2018-08
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Tutor: Laura Igual Muñozca
dc.description.abstract[en] Healthcare is a traditional sector that is demanding, nowadays, a profound change regarding tasks and ways of work. The explotation of data-based analytical techniques together with computational capabilities are potential candidates to lead part of that demanding change. This can cause an innovation to the sector with considerable social impact. In any case, it is necessary to take into account the specific characteristics of the clinical data: quality, volume, access and multimodality. In this Master Thesis, an analysis of the data from critical patients was carried out in order to study the influence of several observables to determine their Length of Stay in the Intensive Care Unit. Try to solve that problem can help a lot not only the physicians from the mere investigation purposes point of view but also the healthcare sector because Intensive Care Unit logistics counts and it can become very important.ca
dc.format.extent53 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/133299
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Albiol Mosegui, Jordi, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationDades massives
dc.subject.classificationUnitats de cures intensives
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationMonitoratge de pacientsca
dc.subject.classificationAlgorismes computacionalsca
dc.subject.classificationModels matemàticsca
dc.subject.otherBig data
dc.subject.otherIntensive care units
dc.subject.otherMaster's theses
dc.subject.otherPatient monitoringen
dc.subject.otherComputer algorithmsen
dc.subject.otherMathematical modelsen
dc.titlePredicting Intensive Care Unit Length of Stay via Supervised Learningca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
TFM_Albiol_Monsegui.pdf
Mida:
3.16 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
8.96 MB
Format:
ZIP file
Descripció:
Codi font