Modelling the evolution and spread of HIV immune escape mutants.

dc.contributor.authorFryer, Helen R.
dc.contributor.authorFrater, John
dc.contributor.authorDuda, Anna
dc.contributor.authorRoberts, Mick G.
dc.contributor.authorSPARTAC Trial Investigators
dc.contributor.authorPhillips, Rodney E.
dc.contributor.authorMcLean, Angela R.
dc.contributor.authorMiró Meda, José M. (José María), 1956-
dc.date.accessioned2013-06-12T12:02:12Z
dc.date.available2013-06-12T12:02:12Z
dc.date.issued2010-11-18
dc.date.updated2013-06-12T10:57:54Z
dc.description.abstractDuring infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec610218
dc.identifier.issn1553-7366
dc.identifier.pmid21124991
dc.identifier.urihttps://hdl.handle.net/2445/44185
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1371/journal.ppat.1001196
dc.relation.ispartofPLoS Pathogens, 2010, vol. 6, num. 11, p. e1001196
dc.relation.urihttp://dx.doi.org/10.1371/journal.ppat.1001196
dc.rightscc-by (c) Fryer, H.R. et al., 2010
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationCèl·lules T
dc.subject.classificationVIH (Virus)
dc.subject.otherT cells
dc.subject.otherHIV (Viruses)
dc.titleModelling the evolution and spread of HIV immune escape mutants.eng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
610218.pdf
Mida:
724.82 KB
Format:
Adobe Portable Document Format