Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Borges, Ana de Almeida Gabriel Vieira et al, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/217429

An Escape from Vardanyan's Theorem

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Vardanyan’s Theorems [36, 37] state that QPL(PA)—the quantified provability logic of Peano Arithmetic—isΠ02 complete, and in particular that this already holds when the language is restricted to a single unary predicate. Moreover, Visser and de Jonge [38] generalized this result to conclude that it is impossible to computably axiomatize the quantified provability logic of a wide class of theories. However, the proof of this fact cannot be performed in a strictly positive signature. The system QRC1 was previously introduced by the authors [1] as a candidate first-order provability logic. Here we generalize the previously available Kripke soundness and completeness proofs, obtaining constant domain completeness. Then we show that QRC1 is indeed complete with respect to arithmetical semantics. This is achieved via a Solovaytype construction applied to constant domain Kripke models. As corollaries, we see that QRC1 is the strictly positive fragment of QGL and a fragment of QPL(PA).

Citació

Citació

BORGES, Ana de almeida gabriel vieira, JOOSTEN, Joost j.. An Escape from Vardanyan's Theorem. _Journal of Symbolic Logic_. 2023. Vol. 88, núm. 4, pàgs. 1613-1638. [consulta: 9 de gener de 2026]. ISSN: 0022-4812. [Disponible a: https://hdl.handle.net/2445/217429]

Exportar metadades

JSON - METS

Compartir registre