Enhancing physicians’ radiology diagnostics of COVID-19’s effects on lung health by leveraging artificial intelligence

dc.contributor.authorGasulla, Óscar
dc.contributor.authorLedesma Carbayo, Maria J.
dc.contributor.authorBorrell, Luisa N.
dc.contributor.authorFortuny Profitós, Jordi
dc.contributor.authorMazaira Font, Ferran A.
dc.contributor.authorBarbero Allende, Jose María
dc.contributor.authorAlonso Menchén, David
dc.contributor.authorGarcía Bennett, Josep
dc.contributor.authorRío Carrrero, Belen del
dc.contributor.authorJofré Grimaldo, Hector
dc.contributor.authorSeguí, Aleix
dc.contributor.authorMonserrat, Jorge
dc.contributor.authorTeixidó Román, Miguel
dc.contributor.authorTorrent, Adrià
dc.contributor.authorOrtega, Miguel Ángel
dc.contributor.authorÁlvarez Mon, Melchor
dc.contributor.authorAsúnsolo, Angel
dc.date.accessioned2024-01-04T18:41:57Z
dc.date.available2024-01-04T18:41:57Z
dc.date.issued2023-04-20
dc.date.updated2023-08-22T11:09:57Z
dc.description.abstractIntroduction: This study aimed to develop an individualized artificial intelligence model to help radiologists assess the severity of COVID-19's effects on patients' lung health.Methods: Data was collected from medical records of 1103 patients diagnosed with COVID-19 using RT- qPCR between March and June 2020, in Hospital Madrid-Group (HM-Group, Spain). By using Convolutional Neural Networks, we determine the effects of COVID-19 in terms of lung area, opacities, and pulmonary air density. We then combine these variables with age and sex in a regression model to assess the severity of these conditions with respect to fatality risk (death or ICU).Results: Our model can predict high effect with an AUC of 0.736. Finally, we compare the performance of the model with respect to six physicians' diagnosis, and test for improvements on physicians' performance when using the prediction algorithm.Discussion: We find that the algorithm outperforms physicians (39.5% less error), and thus, physicians can significantly benefit from the information provided by the algorithm by reducing error by almost 30%.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2296-4185
dc.identifier.pmid37152658
dc.identifier.urihttps://hdl.handle.net/2445/205263
dc.language.isoeng
dc.publisherFrontiers Media SA
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fbioe.2023.1010679
dc.relation.ispartofFrontiers in Bioengineering and Biotechnology, 2023, vol. 11
dc.relation.urihttps://doi.org/10.3389/fbioe.2023.1010679
dc.rightscc by (c) Gasulla, Óscar et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationCOVID-19
dc.subject.classificationAparell respiratori
dc.subject.otherCOVID-19
dc.subject.otherRespiratory organs
dc.titleEnhancing physicians’ radiology diagnostics of COVID-19’s effects on lung health by leveraging artificial intelligence
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
fbioe-11-1010679.pdf
Mida:
1.24 MB
Format:
Adobe Portable Document Format