Optimal Polynomial Prediction Measures and Extremal Polynomial Growth

dc.contributor.authorBos, Leonard Peter
dc.contributor.authorLevenberg, Norm
dc.contributor.authorOrtega Cerdà, Joaquim
dc.date.accessioned2021-11-25T10:46:23Z
dc.date.available2021-11-25T10:46:23Z
dc.date.issued2020-11-02
dc.date.updated2021-11-25T10:46:23Z
dc.description.abstractWe show that the problem of finding the measure supported on a compact set $K\subset \C$ such that the variance of the least squares predictor by polynomials of degree at most $n$ at a point $z_0\in\C^d\backslash K$ is a minimum, is equivalent to the problem of finding the polynomial of degree at most $n,$ bounded by 1 on $K,$ with extremal growth at $z_0.$ We use this to find the polynomials of extremal growth for $[-1,1]\subset \C$ at a purely imaginary point. The related problem on the extremal growth of real polynomials was studied by Erd\H{o}s (Bull Am Math Soc 53:1169-1176, 1947).
dc.format.extent23 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec702847
dc.identifier.issn0176-4276
dc.identifier.urihttps://hdl.handle.net/2445/181476
dc.language.isoeng
dc.publisherSpringer Science + Business Media
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s00365-020-09522-1
dc.relation.ispartofConstructive Approximation, 2020, vol. 54, num. 3, p. 431-453
dc.relation.urihttps://doi.org/10.1007/s00365-020-09522-1
dc.rights(c) Springer Science + Business Media, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationDesigualtats (Matemàtica)
dc.subject.classificationTeoria de l'aproximació
dc.subject.classificationFuncions de variables complexes
dc.subject.otherInequalities (Mathematics)
dc.subject.otherApproximation theory
dc.subject.otherFunctions of complex variables
dc.titleOptimal Polynomial Prediction Measures and Extremal Polynomial Growth
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
702847.pdf
Mida:
338.98 KB
Format:
Adobe Portable Document Format