Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results from the MICCAI 2015 Endoscopic Vision Challenge

dc.contributor.authorBernal, Jorge
dc.contributor.authorTajbakhsh, Nima
dc.contributor.authorSánchez, F. Javier
dc.contributor.authorMatuszewski, Bogdan J.
dc.contributor.authorChen, Hao
dc.contributor.authorYu, Lequan
dc.contributor.authorAngermann, Quentin
dc.contributor.authorRomain, Olivier
dc.contributor.authorRustad, Bjorn
dc.contributor.authorBalasingham, Ilangko
dc.contributor.authorPogorelov, Konstantin
dc.contributor.authorChoi, Sungbin
dc.contributor.authorDebard, Quentin
dc.contributor.authorMaier-Hein, Lena
dc.contributor.authorSpeidel, Stefanie
dc.contributor.authorStoyanov, Danail
dc.contributor.authorBrandao, Patrick
dc.contributor.authorCordova, Henry
dc.contributor.authorSánchez Montes, Cristina
dc.contributor.authorGurudu, Suryakanth R.
dc.contributor.authorFernández Esparrach, Glòria
dc.contributor.authorDray, Xavier
dc.contributor.authorLiang, Jianming
dc.contributor.authorHistace, Aymeric
dc.date.accessioned2018-06-29T17:26:02Z
dc.date.available2018-06-29T17:26:02Z
dc.date.issued2017-06
dc.date.updated2018-06-29T17:26:03Z
dc.description.abstractColonoscopy is the gold standard for colon cancer screening though some polyps are still missed, thus preventing early disease detection and treatment. Several computational systems have been proposed to assist polyp detection during colonoscopy but so far without consistent evaluation. The lack of publicly available annotated databases has made it difficult to compare methods and to assess if they achieve performance levels acceptable for clinical use. The Automatic Polyp Detection sub-challenge, conducted as part of the Endoscopic Vision Challenge (http://endovis.grand-challenge.org) at the international conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2015, was an effort to address this need. In this paper, we report the results of this comparative evaluation of polyp detection methods, as well as describe additional experiments to further explore differences between methods. We define performance metrics and provide evaluation databases that allow comparison of multiple methodologies. Results show that convolutional neural networks are the state of the art. Nevertheless, it is also demonstrated that combining different methodologies can lead to an improved overall performance.
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec667757
dc.identifier.issn0278-0062
dc.identifier.pmid28182555
dc.identifier.urihttps://hdl.handle.net/2445/123294
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1109/TMI.2017.2664042
dc.relation.ispartofIEEE Transactions on Medical Imaging, 2017, vol. 36, num. 6, p. 1231-1249
dc.relation.urihttps://doi.org/10.1109/TMI.2017.2664042
dc.rights(c) Institute of Electrical and Electronics Engineers (IEEE), 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationColonoscòpia
dc.subject.classificationCàncer colorectal
dc.subject.classificationEndoscòpia
dc.subject.otherColonoscopy
dc.subject.otherColorectal cancer
dc.subject.otherEndoscopy
dc.titleComparative Validation of Polyp Detection Methods in Video Colonoscopy: Results from the MICCAI 2015 Endoscopic Vision Challenge
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
667757.pdf
Mida:
2.31 MB
Format:
Adobe Portable Document Format