Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Manel Rodríguez Soto, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/224349

Multi-Objective Reinforcement Learning for Designing Ethical Multi-Agent Environments

Títol de la revista

ISSN de la revista

Títol del volum

Resum

This paper tackles the open problem of value alignment in multi-agent systems. In particular, we propose an approach to build an ethical environment that guarantees that agents in the system learn a joint ethically-aligned behaviour while pursuing their respective individual objectives. Our contributions are founded in the framework of Multi-Objective Multi-Agent Reinforcement Learning. Firstly, we characterise a family of Multi-Objective Markov Games (MOMGs), the socalled ethical MOMGs, for which we can formally guarantee the learning of ethical behaviours. Secondly, based on our characterisation we specify the process for building single-objective ethical environments that simplify the learning in the multi-agent system. We illustrate our process with an ethical variation of the Gathering Game, where agents manage to compensate social inequalities by learning to behave in alignment with the moral value of beneficence.

Descripció

Citació

Citació

RODRÍGUEZ SOTO, Manel, LÓPEZ SÁNCHEZ, Maite, RODRÍGUEZ-AGUILAR, Juan a. (juan antonio). Multi-Objective Reinforcement Learning for Designing Ethical Multi-Agent Environments. _Neural Computing & Applications_. 2023. Vol. 37, núm. 25619-25644. [consulta: 24 de novembre de 2025]. ISSN: 0941-0643. [Disponible a: https://hdl.handle.net/2445/224349]

Exportar metadades

JSON - METS

Compartir registre