Multi-Objective Reinforcement Learning for Designing Ethical Multi-Agent Environments

dc.contributor.authorRodríguez Soto, Manel
dc.contributor.authorLópez Sánchez, Maite
dc.contributor.authorRodríguez-Aguilar, Juan A. (Juan Antonio)
dc.date.accessioned2025-11-13T11:46:57Z
dc.date.available2025-11-13T11:46:57Z
dc.date.issued2023-08-23
dc.date.updated2025-11-13T11:46:57Z
dc.description.abstractThis paper tackles the open problem of value alignment in multi-agent systems. In particular, we propose an approach to build an ethical environment that guarantees that agents in the system learn a joint ethically-aligned behaviour while pursuing their respective individual objectives. Our contributions are founded in the framework of Multi-Objective Multi-Agent Reinforcement Learning. Firstly, we characterise a family of Multi-Objective Markov Games (MOMGs), the socalled ethical MOMGs, for which we can formally guarantee the learning of ethical behaviours. Secondly, based on our characterisation we specify the process for building single-objective ethical environments that simplify the learning in the multi-agent system. We illustrate our process with an ethical variation of the Gathering Game, where agents manage to compensate social inequalities by learning to behave in alignment with the moral value of beneficence.
dc.format.extent26 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec738080
dc.identifier.issn0941-0643
dc.identifier.urihttps://hdl.handle.net/2445/224349
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00521-023-08898-y
dc.relation.ispartofNeural Computing & Applications, 2023, vol. 37, p. 25619-25644
dc.relation.urihttps://doi.org/10.1007/s00521-023-08898-y
dc.rightscc by (c) Manel Rodríguez Soto, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationÈtica
dc.subject.classificationAprenentatge per reforç (Intel·ligència artificial)
dc.subject.classificationSistemes multiagent
dc.subject.otherEthics
dc.subject.otherReinforcement learning
dc.subject.otherMultiagent systems
dc.titleMulti-Objective Reinforcement Learning for Designing Ethical Multi-Agent Environments
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
825227.pdf
Mida:
1.48 MB
Format:
Adobe Portable Document Format