Study and optimization of alternative MBE‐deposited metallic precursors for highly efficient kesterite CZTSe:Ge solar cells

dc.contributor.authorGiraldo, Sergio
dc.contributor.authorKim, Shinho
dc.contributor.authorAndrade‐Arvizu, Jacob Antonio
dc.contributor.authorAlcobé i Ollé, Xavier
dc.contributor.authorMalerba, Claudia
dc.contributor.authorValentini, Matteo
dc.contributor.authorTampo, Hitoshi
dc.contributor.authorShibata, Hajime
dc.contributor.authorIzquierdo‐Roca, Victor
dc.contributor.authorPérez Rodríguez, Alejandro
dc.contributor.authorSaucedo Silva, Edgardo
dc.date.accessioned2020-11-12T16:21:52Z
dc.date.available2020-11-12T16:21:52Z
dc.date.issued2019-06-19
dc.date.updated2020-11-12T16:21:52Z
dc.description.abstractNowadays, most of the best efficiencies of Cu2ZnSn(S,Se)4 (CZTSSe) solar cells are obtained from absorber layers fabricated using sequential processes, including the deposition of metallic stack precursors, typically by sputtering, and followed by reactive annealing under chalcogen atmosphere. The sputtering technique is widely known for the easy growth of metallic layers, although the deposition rates, growth morphology and nucleation, or the roughness can sometimes be an issue leading to inhomogeneities in the final layers. Nevertheless, MBE (molecular beam epitaxy) technique could have some advantages to obtain high‐quality metallic layers, with accurate control of the growth due to ultra‐high vacuum conditions and high purity. In this work, we study the use of advanced MBE systems to grow metallic stack precursors, alternatively to sputtering or thermal evaporation techniques, to obtain high‐quality CZTSe:Ge absorbers. Due to differences in the nature of each type of precursor, thermal annealing optimizations are presented by modifying some critical selenization parameters, such as the temperature or the selenium amount in order to obtain well‐crystallized absorbers. Detailed morphological, compositional, and structural characterizations show relevant features of each precursor, mainly related to the formation of MoSe2 at the back interface, and Se and Sn composition after selenization in different conditions. Regarding the solar cell devices, main efficiency limitations come from VOC and FF, which could be tentatively related to a noncontrolled selenization; different precursor reactivity, porosity, or composition; and different alkali diffusion during the reactive annealing. Finally, in the first optimization, a 9.2% efficiency device has been achieved with promising perspectives for future improvements.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec695171
dc.identifier.issn1062-7995
dc.identifier.urihttps://hdl.handle.net/2445/172005
dc.language.isoeng
dc.publisherJohn Wiley & Sons
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1002/pip.3147
dc.relation.ispartofProgress in Photovoltaics, 2019, vol. 27, num. 9, p. 779-788
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/720907/EU//STARCELL
dc.relation.urihttps://doi.org/10.1002/pip.3147
dc.rightscc-by (c) Giraldo et. al., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationCèl·lules solars
dc.subject.classificationEvaporació
dc.subject.classificationSeleni
dc.subject.otherSolar cells
dc.subject.otherEvaporation
dc.subject.otherSelenium
dc.titleStudy and optimization of alternative MBE‐deposited metallic precursors for highly efficient kesterite CZTSe:Ge solar cells
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
695171.pdf
Mida:
1.77 MB
Format:
Adobe Portable Document Format