Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Nogué, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/202911

Reinforcement Learning based Circuit Compilation via ZX-calculus

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

ZX-calculus is a formalism that can be used for quantum circuit compilation and optimization. We developed a Reinforcement Learning approach for enhanced circuit optimization via the ZX-diagram graph representation of the quantum circuit. The agent is trained using the well-established Proximal Policy Optimization (PPO) algorithm, and it uses Conditional Action Trees to perform Invalid Action Masking to reduce the space of actions available to the agent and speed up its training. Additionally, we also design and implement a Genetic Algorithm for the same task. Both the genetic algorithm and the most widely used ZX-calculus-based library for circuit optimization, the PyZX library, are used to benchmark our RL approach. We find our RL algorithm to be competitive against both approaches, but further exploration is required.

Descripció

Màster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2022-2023. Tutors: Jordi Riu, Marta P Estarellas

Citació

Citació

NOGUÉ GÓMEZ, Jan. Reinforcement Learning based Circuit Compilation via ZX-calculus. [consulta: 27 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/202911]

Exportar metadades

JSON - METS

Compartir registre