Reinforcement Learning based Circuit Compilation via ZX-calculus

dc.contributor.advisorRiu Vicente, Jordi
dc.contributor.advisorEstarellas, Marta P.
dc.contributor.authorNogué Gómez, Jan
dc.date.accessioned2023-10-17T13:35:34Z
dc.date.available2023-10-17T13:35:34Z
dc.date.issued2023-08
dc.descriptionMàster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2022-2023. Tutors: Jordi Riu, Marta P Estarellasca
dc.description.abstractZX-calculus is a formalism that can be used for quantum circuit compilation and optimization. We developed a Reinforcement Learning approach for enhanced circuit optimization via the ZX-diagram graph representation of the quantum circuit. The agent is trained using the well-established Proximal Policy Optimization (PPO) algorithm, and it uses Conditional Action Trees to perform Invalid Action Masking to reduce the space of actions available to the agent and speed up its training. Additionally, we also design and implement a Genetic Algorithm for the same task. Both the genetic algorithm and the most widely used ZX-calculus-based library for circuit optimization, the PyZX library, are used to benchmark our RL approach. We find our RL algorithm to be competitive against both approaches, but further exploration is required.ca
dc.format.extent33 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/202911
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Nogué, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology
dc.subject.classificationOrdinadors quàntics
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationCircuits quàntics
dc.subject.classificationTreballs de fi de màster
dc.subject.otherQuantum computers
dc.subject.otherMachine learning
dc.subject.otherQuantum circuit
dc.subject.otherMaster's thesis
dc.titleReinforcement Learning based Circuit Compilation via ZX-calculuseng
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Memoria_TFM-JanNogue.pdf
Mida:
1.94 MB
Format:
Adobe Portable Document Format
Descripció: