Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/161200
Non-acted multi-view audio-visual dyadic interactions. Project master thesis: multitask learning for facial attributes analysis
Títol de la revista
Autors
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] In this thesis we explore the use of Multitask Learning for improving performance in facial attributes tasks such as gender, age and ethnicity prediction. These tasks, along with emotion recognition will be part of a new dyadic interaction dataset which was recorded during the development of this thesis. This work includes the
implementation of two state of the art multitask deep learning models and the discussion of the results obtained from these methods in a preliminary dataset, as well as a first evaluation in a sample of the dyadic interaction dataset. This will serve as a baseline for a future implementation of Multitask Learning methods in the fully
annotated dyadic interaction dataset.
Descripció
Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Sergio Escalera Guerrero, Cristina Palmero i Julio C. S. Jacques Junior
Matèries (anglès)
Citació
Citació
MASDEU NINOT, Andreu. Non-acted multi-view audio-visual dyadic interactions. Project master thesis: multitask learning for facial attributes analysis. [consulta: 7 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/161200]