Non-acted multi-view audio-visual dyadic interactions. Project master thesis: multitask learning for facial attributes analysis

dc.contributor.advisorEscalera Guerrero, Sergio
dc.contributor.advisorPalmero Cantariño, Cristina
dc.contributor.advisorJacques Junior, Julio C. S.
dc.contributor.authorMasdeu Ninot, Andreu
dc.date.accessioned2020-05-19T08:12:01Z
dc.date.available2020-05-19T08:12:01Z
dc.date.issued2019-09-02
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Sergio Escalera Guerrero, Cristina Palmero i Julio C. S. Jacques Juniorca
dc.description.abstract[en] In this thesis we explore the use of Multitask Learning for improving performance in facial attributes tasks such as gender, age and ethnicity prediction. These tasks, along with emotion recognition will be part of a new dyadic interaction dataset which was recorded during the development of this thesis. This work includes the implementation of two state of the art multitask deep learning models and the discussion of the results obtained from these methods in a preliminary dataset, as well as a first evaluation in a sample of the dyadic interaction dataset. This will serve as a baseline for a future implementation of Multitask Learning methods in the fully annotated dyadic interaction dataset.ca
dc.format.extent63 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/161200
dc.language.isoengca
dc.rightscc-by-sa (c) Andreu Masdeu Ninot, 2019
dc.rightscodi: GPL (c) Andreu Masdeu Ninot, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationEmocions
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationExpressió facial
dc.subject.otherMachine learning
dc.subject.otherEmotions
dc.subject.otherMaster's theses
dc.subject.otherFacial expression
dc.titleNon-acted multi-view audio-visual dyadic interactions. Project master thesis: multitask learning for facial attributes analysisca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
161200.pdf
Mida:
8.08 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
1.94 MB
Format:
ZIP file
Descripció:
Codi font