Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/155665

Semilinear fractional stochastic differential equations driven by a $\gamma$ -Hölder continuous signal with $\gamma>2 / 3$

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this paper, we use the techniques of fractional calculus to study the existence of a unique solution to semilinear fractional differential equation driven by a $\gamma$ -Hölder continuous function $\theta$ with $\gamma \in\left(\frac{2}{3}, 1\right) .$ Here, the initial condition is a function that may not be defined at zero and the involved integral with respect to $\theta$ is the extension of the Young integral [An inequality of the Hölder type, connected with Stieltjes integration, Acta Math.67 (1936) 251-282] given by Zähle [Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields111 (1998) $333-374]$

Citació

Citació

LEÓN, Jorge a., MÁRQUEZ, David (márquez carreras). Semilinear fractional stochastic differential equations driven by a $\gamma$ -Hölder continuous signal with $\gamma>2 / 3$. _Stochastics and Dynamics_. 2019. [consulta: 28 de gener de 2026]. ISSN: 0219-4937. [Disponible a: https://hdl.handle.net/2445/155665]

Exportar metadades

JSON - METS

Compartir registre