Semilinear fractional stochastic differential equations driven by a $\gamma$ -Hölder continuous signal with $\gamma>2 / 3$

dc.contributor.authorLeón, Jorge A.
dc.contributor.authorMárquez, David (Márquez Carreras)
dc.date.accessioned2020-04-17T06:37:13Z
dc.date.available2020-12-31T06:10:19Z
dc.date.issued2019
dc.date.updated2020-04-17T06:37:13Z
dc.description.abstractIn this paper, we use the techniques of fractional calculus to study the existence of a unique solution to semilinear fractional differential equation driven by a $\gamma$ -Hölder continuous function $\theta$ with $\gamma \in\left(\frac{2}{3}, 1\right) .$ Here, the initial condition is a function that may not be defined at zero and the involved integral with respect to $\theta$ is the extension of the Young integral [An inequality of the Hölder type, connected with Stieltjes integration, Acta Math.67 (1936) 251-282] given by Zähle [Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields111 (1998) $333-374]$
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec697874
dc.identifier.issn0219-4937
dc.identifier.urihttps://hdl.handle.net/2445/155665
dc.language.isoeng
dc.publisherWorld Scientific Publishing
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1142/S0219493720500392
dc.relation.ispartofStochastics and Dynamics, 2019
dc.relation.urihttps://doi.org/10.1142/S0219493720500392
dc.rights(c) World Scientific Publishing, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationEquacions integrals estocàstiques
dc.subject.classificationProcessos de moviment brownià
dc.subject.classificationEquacions integrals
dc.subject.otherStochastic integral equations
dc.subject.otherBrownian motion processes
dc.subject.otherIntegral equations
dc.titleSemilinear fractional stochastic differential equations driven by a $\gamma$ -Hölder continuous signal with $\gamma>2 / 3$
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
697874.pdf
Mida:
448.6 KB
Format:
Adobe Portable Document Format