Deep-stratification of the cardiovascular risk by ultrasound carotid artery images

dc.contributor.authorGrau, Maria
dc.contributor.authorGago, Lucas
dc.contributor.authorPérez Sánchez, Pablo
dc.contributor.authorGrau, Maria
dc.contributor.authorRemeseiro López, Beatriz
dc.contributor.authorIgual Muñoz, Laura
dc.date.accessioned2025-11-28T10:21:23Z
dc.date.available2025-11-28T10:21:23Z
dc.date.issued2024-02-13
dc.date.updated2025-11-28T10:21:23Z
dc.description.abstractCardiovascular risk estimation functions predict the risk of cardiovascular events with clinical data and survivalmodels. These functions accurately stratify individuals into low, moderate, and high-risk categories. However,they tend to classify a considerable number of individuals into the middle-risk category, and often, a subsequentreclassification into high-risk groups is required. Atherosclerosis is the leading cause of cardiovascular events,and ultrasound images of the Carotid Artery (CA) can detect its burden by measuring the carotid intimamediathickness and identifying atherosclerotic plaques. Current risk estimation functions do not considerultrasound imaging. This paper proposes the use of deep ultrasound CA image features in survival models toimprove risk stratification. In particular, we define new deep CA image features, extracting information froma convolutional neural network, and add them to an existing risk function. The experiments carried out showthat using deep image features improves the AUC of the risk function to 0.842, and these features are enoughto replace the information provided by blood biomarkers. Furthermore, the use of these features resulted in a20% improvement in the reclassification of risk categories, specifically for individuals who suffered an event,as shown by the net reclassification improvement metric.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec742533
dc.identifier.issn1746-8094
dc.identifier.urihttps://hdl.handle.net/2445/224486
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.bspc.2024.106035
dc.relation.ispartofBiomedical Signal Processing And Control, 2024, vol. 91
dc.relation.urihttps://doi.org/10.1016/j.bspc.2024.106035
dc.rightscc-by-nc-nd (c) Grau, Maria et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationAterosclerosi
dc.subject.classificationEcografia Doppler
dc.subject.otherAtherosclerosis
dc.subject.otherDoppler ultrasonography
dc.titleDeep-stratification of the cardiovascular risk by ultrasound carotid artery images
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
842389.pdf
Mida:
855.87 KB
Format:
Adobe Portable Document Format