Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

ccby-nc-nd (c) Elsevier
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/207922

A machine learning and live-cell imaging tool kit uncovers small molecules induced phospholipidosis

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Drug-induced phospholipidosis (DIPL), characterized by excessive accumulation of phospholipids in lysosomes, can lead to clinical adverse effects. It may also alter phenotypic responses in functional studies using chemical probes. Therefore, robust methods are needed to predict and quantify phospholipidosis (PL) early in drug discovery and in chemical probe characterization. Here, we present a versatile high-content live-cell imaging approach, which was used to evaluate a chemogenomic and a lysosomal modulation library. We trained and evaluated several machine learning models using the most comprehensive set of publicly available compounds and interpreted the best model using SHapley Additive exPlanations (SHAP). Analysis of high-quality chemical probes extracted from the Chemical Probes Portal using our algorithm revealed that closely related molecules, such as chemical probes and their matched negative controls can differ in their ability to induce PL, highlighting the importance of identifying PL for robust target validation in chemical biology.

Matèries (anglès)

Citació

Citació

HU, Huabin, TJADEN, Amelie, KNAPP, Stefan, ANTOLIN, Albert a., MÜLLER, Susanne. A machine learning and live-cell imaging tool kit uncovers small molecules induced phospholipidosis. _Cell Chemical Biology_. 2023. Vol. 30, núm. 12, pàgs. 1634-1651. [consulta: 20 de gener de 2026]. ISSN: 2451-9448. [Disponible a: https://hdl.handle.net/2445/207922]

Exportar metadades

JSON - METS

Compartir registre