Global dynamics of the real secant method

dc.contributor.authorGarijo Real, Antonio
dc.contributor.authorJarque i Ribera, Xavier
dc.date.accessioned2020-02-17T12:05:38Z
dc.date.available2020-10-14T05:10:23Z
dc.date.issued2019-10-14
dc.date.updated2020-02-17T12:05:38Z
dc.description.abstractWe investigate the root finding algorithm given by the secant method applied to a real polynomial $p$ as a discrete dynamical system defined on $\mathbb{R}^{2}$ . We study the shape and distribution of the basins of attraction associated to the roots of p , and we also show the existence of other stable dynamics that might affect the efficiency of the algorithm. Finally we extend the secant map to the punctured torus $\mathbb{T}_{\infty}^{2}$ which allow us to better understand the dynamics of the secant method near $\infty$ and facilitate the use of the secant map as a method to find all roots of a polynomial.
dc.format.extent22 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec695992
dc.identifier.issn0951-7715
dc.identifier.urihttps://hdl.handle.net/2445/150446
dc.language.isoeng
dc.publisherIOP Publishing
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1088/1361-6544/ab2f55
dc.relation.ispartofNonlinearity, 2019, vol. 32, num. 11, p. 4557-4578
dc.relation.urihttps://doi.org/10.1088/1361-6544/ab2f55
dc.rights(c) IOP Publishing & London Mathematical Society , 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria de la bifurcació
dc.subject.classificationFuncions de diverses variables complexes
dc.subject.otherBifurcation theory
dc.subject.otherFunctions of several complex variables
dc.titleGlobal dynamics of the real secant method
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
695992.pdf
Mida:
1007.29 KB
Format:
Adobe Portable Document Format