Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/127836
The parameterization method for invariant manifolds of real-analytic dynamical systems
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] The main goal of this work is to devolope the parameterization method, which was introduced by X. Cabré, E. Fontich and R. de la Llave [HCF+16]. It is an important tool to study diverse invariant manifolds attached to fixed points in different contexts. To be acquainted with the parameterization method, we divide the work into two studies which are as follows.
In the first study, we aim to prove the existence and regularity of invariant manifolds. Furthermore, we also demonstrate that the parameterization method in different contexts can reach to obtain different kinds of invariant manifold at fixed points. As a first simple application, the method allows us to give a quick proof of (un)stable manifolds theorems. For instance, the existence of a real-analytic one-dimensional stable manifolds at the origin for maps or a 2D stable manifolds for flows.
Once, we proved the existence of the manifolds. The second study is to emphasize the computational aspects derived from the application of the parameterization method. We would like to work out the coefficients of the invariant manifold expanded in series and sketch the approximation of the invariant manifolds by using computer programs. We can get an efficient algorithm for numerical computation of invariant manifolds base on the parameterization method.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Àlex Haro
Citació
Citació
WANG, Chanyan. The parameterization method for invariant manifolds of real-analytic dynamical systems. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/127836]