Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Begiristain, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/200961

Machine learning solutions for the two-dimensional quantum harmonic oscillator

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

In this work, I have used Artificial Neural Networks to find the ground state of the 2D quantum harmonic oscillator. I have trained networks in two different ways: by using a mesh of points and by using Monte Carlo methods. I have used the analytical solution of the problem to benchmark the quality of the results of both methods, obtaining overlaps up to 0.99998 in the case of the mesh training and 0.9989 in the case of Monte Carlo. The relative errors in the energy are 0.03% and 1.1% respectively. I have shown the effects of the number of neurons and the learning rate on the overall performance of the network. Training with Monte Carlo shows faster convergence, while training on the mesh gets closer to the exact energy.

Descripció

Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutor: Arnau Rios Huguet

Citació

Citació

BEGIRISTAIN RIBÓ, León. Machine learning solutions for the two-dimensional quantum harmonic oscillator. [consulta: 15 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/200961]

Exportar metadades

JSON - METS

Compartir registre