Machine learning solutions for the two-dimensional quantum harmonic oscillator

dc.contributor.advisorRios Huguet, Arnau
dc.contributor.authorBegiristain Ribó, León
dc.date.accessioned2023-07-20T07:28:14Z
dc.date.available2023-07-20T07:28:14Z
dc.date.issued2023-05
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutor: Arnau Rios Huguetca
dc.description.abstractIn this work, I have used Artificial Neural Networks to find the ground state of the 2D quantum harmonic oscillator. I have trained networks in two different ways: by using a mesh of points and by using Monte Carlo methods. I have used the analytical solution of the problem to benchmark the quality of the results of both methods, obtaining overlaps up to 0.99998 in the case of the mesh training and 0.9989 in the case of Monte Carlo. The relative errors in the energy are 0.03% and 1.1% respectively. I have shown the effects of the number of neurons and the learning rate on the overall performance of the network. Training with Monte Carlo shows faster convergence, while training on the mesh gets closer to the exact energy.ca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/200961
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Begiristain, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationOscil·lador harmònic quànticcat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherMachine learningeng
dc.subject.otherQuantum harmonic oscillatoreng
dc.subject.otherBachelor's theseseng
dc.titleMachine learning solutions for the two-dimensional quantum harmonic oscillatoreng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
BEGIRISTAIN RIBÓ LEÓN_7934082.pdf
Mida:
361.66 KB
Format:
Adobe Portable Document Format
Descripció: