Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/182314
Hierarchical Portfolio Optimization
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
The field of Portfolio Optimization has historically had a very hard time as the Mathematical Models at its availability are based on certain assumptions one can not afford to make in the financial markets, making naive approaches all-too entic-ing. In this project we have introduced the assumption that the different stocks in the financial markets have a hierarchical structure and have allowed ourselves to be inspired by it to build portfolios through a Machine Learning approach. We have employed the Hierarchical Risk Parity algorithm and tested minor variations relat-ing to the dissimilarity measure it makes use of. The tests were conducted with historical daily closing price data from 2014 to 2020 for 440 stocks in the S&P 500 index. Results suggest most of the tested Hierarchical Risk Parity variants are ro-bust and can compete with the Equal Weights Portfolio. We mainly encourage the use of two dissimilarity measures, the standard one, a correlation based metric and Dynamic Time Warping. The former is suggested to the pessimistic investor while the latter to the hopeful yet conservative investor. To optimistic investors with a high risk tolerance the recommendation would be to use the traditional Equal Weights portfolio among the asset allocation methods considered in this project.
Descripció
Treballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2020-2021, Tutor: José Antonio González Alaustré
Matèries (anglès)
Citació
Citació
DE LIO PÉREGO, Francisco. Hierarchical Portfolio Optimization. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/182314]