Hierarchical Portfolio Optimization

dc.contributor.advisorGonzález Alastrué, José Antonio
dc.contributor.authorDe Lio Pérego, Francisco
dc.date.accessioned2022-01-13T08:54:58Z
dc.date.available2022-01-13T08:54:58Z
dc.date.issued2021
dc.descriptionTreballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2020-2021, Tutor: José Antonio González Alaustréca
dc.description.abstractThe field of Portfolio Optimization has historically had a very hard time as the Mathematical Models at its availability are based on certain assumptions one can not afford to make in the financial markets, making naive approaches all-too entic-ing. In this project we have introduced the assumption that the different stocks in the financial markets have a hierarchical structure and have allowed ourselves to be inspired by it to build portfolios through a Machine Learning approach. We have employed the Hierarchical Risk Parity algorithm and tested minor variations relat-ing to the dissimilarity measure it makes use of. The tests were conducted with historical daily closing price data from 2014 to 2020 for 440 stocks in the S&P 500 index. Results suggest most of the tested Hierarchical Risk Parity variants are ro-bust and can compete with the Equal Weights Portfolio. We mainly encourage the use of two dissimilarity measures, the standard one, a correlation based metric and Dynamic Time Warping. The former is suggested to the pessimistic investor while the latter to the hopeful yet conservative investor. To optimistic investors with a high risk tolerance the recommendation would be to use the traditional Equal Weights portfolio among the asset allocation methods considered in this project.ca
dc.format.extent60 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/182314
dc.language.isoengca
dc.rightscc-by-nc-nd (c) De Lio Pérego, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Estadística UB-UPC
dc.subject.classificationAnàlisi de conglomeratscat
dc.subject.classificationAnàlisi de sèries temporalscat
dc.subject.classificationÍndexs borsariscat
dc.subject.classificationTreballs de fi de grau
dc.subject.otherCluster analysiseng
dc.subject.otherTime-series analysiseng
dc.subject.otherStock price indexeseng
dc.subject.otherBachelor's theseseng
dc.titleHierarchical Portfolio Optimizationca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFG-EST Francisco De Lio.pdf
Mida:
2.21 MB
Format:
Adobe Portable Document Format
Descripció: