Electromyography-based respiratory onset detection in copd patients on non-invasive mechanical ventilation

dc.contributor.authorSarlabous, Leonardo
dc.contributor.authorEstrada, Luis
dc.contributor.authorCerezo Hernández, Ana
dc.contributor.authorLeets, Sietske V. D.
dc.contributor.authorTorres, Abel
dc.contributor.authorJané, Raimon
dc.contributor.authorDuiverman, Marieke
dc.contributor.authorGarde, Ainara
dc.date.accessioned2022-06-01T10:55:24Z
dc.date.available2022-06-01T10:55:24Z
dc.date.issued2019-03-07
dc.date.updated2022-06-01T06:57:07Z
dc.description.abstractTo optimize long-term nocturnal non-invasive ventilation in patients with chronic obstructive pulmonary disease, surface diaphragm electromyography (EMGdi) might be helpful to detect patient-ventilator asynchrony. However, visual analysis is labor-intensive and EMGdi is heavily corrupted by electrocardiographic (ECG) activity. Therefore, we developed an automatic method to detect inspiratory onset from EMGdi envelope using fixed sample entropy (fSE) and a dynamic threshold based on kernel density estimation (KDE). Moreover, we combined fSE with adaptive filtering techniques to reduce ECG interference and improve onset detection. The performance of EMGdi envelopes extracted by applying fSE and fSE with adaptive filtering was compared to the root mean square (RMS)-based envelope provided by the EMG acquisition device. Automatic onset detection accuracy, using these three envelopes, was evaluated through the root mean square error (RMSE) between the automatic and mean visual onsets (made by two observers). The fSE-based method provided lower RMSE, which was reduced from 298 ms to 264 ms when combined with adaptive filtering, compared to 301 ms provided by the RMS-based method. The RMSE was negatively correlated with the proposed EMGdi quality indices. Following further validation, fSE with KDE, combined with adaptive filtering when dealing with low quality EMGdi, indicates promise for detecting the neural onset of respiratory drive.
dc.format.extent15 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina5611060
dc.identifier.issn1099-4300
dc.identifier.pmid33266973
dc.identifier.urihttps://hdl.handle.net/2445/186184
dc.language.isoeng
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/e21030258
dc.relation.ispartofEntropy, 2019, vol. 21, num. 3, p. 258
dc.relation.urihttps://doi.org/10.3390/e21030258
dc.rightscc by (c) Sarlabous, Leonardo et al, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
dc.subject.classificationRespiració artificial
dc.subject.classificationMalalties pulmonars obstructives cròniques
dc.subject.otherArtificial respiration
dc.subject.otherChronic obstructive pulmonary diseases
dc.titleElectromyography-based respiratory onset detection in copd patients on non-invasive mechanical ventilation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
2019_Entropy_Electromyography_Jane.pdf
Mida:
1.63 MB
Format:
Adobe Portable Document Format