A characterization of bilinear forms on the dirichlet space

dc.contributor.authorCascante, Ma. Carme (Maria Carme)
dc.contributor.authorOrtega Aramburu, Joaquín M.
dc.date.accessioned2016-04-01T09:18:29Z
dc.date.available2016-04-01T09:18:29Z
dc.date.issued2012-07
dc.date.updated2016-04-01T09:18:34Z
dc.description.abstractArcozzi, Rochberg, Sawyer and Wick obtained a characterization of the holomorphic functions $b$ such that the Hankel type bilinear form $T_{b}(f,g)=\int_{\mathbb{D}}(I+R)(f,g)(z)\overline{(I+R)b(z)}dv (z) $ is bounded on $ {\mathcal D}\times {\mathcal D}$, where $ {\mathcal D}$ is the Dirichlet space. In this paper we give an alternative proof of this characterization which tries to understand the similarity with the results of Maz$ '$ya and Verbitsky relative to the Schrödinger forms on the Sobolev spaces $ L_2^1(\mathbb{R}^n)$.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec599452
dc.identifier.issn0002-9939
dc.identifier.urihttps://hdl.handle.net/2445/96825
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9939-2011-11409-6
dc.relation.ispartofProceedings of the American Mathematical Society, 2012, vol. 140, num. 7, p. 2429-2440
dc.relation.urihttp://dx.doi.org/10.1090/S0002-9939-2011-11409-6
dc.rights(c) American Mathematical Society (AMS), 2012
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria del potencial (Matemàtica)
dc.subject.classificationTeoria d'operadors
dc.subject.classificationOperadors lineals
dc.subject.otherPotential theory (Mathematics)
dc.subject.otherOperator theory
dc.subject.otherLinear operators
dc.titleA characterization of bilinear forms on the dirichlet space
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
599452.pdf
Mida:
209.61 KB
Format:
Adobe Portable Document Format