Towards collaborative data science in mental health research: The ECNP neuroimaging network accessible data repository

dc.contributor.authorKhuntia, Adyasha
dc.contributor.authorBuciuman, Madalina-Octavia
dc.contributor.authorFanning, John
dc.contributor.authorStolicyn, Aleks
dc.contributor.authorVetter, Clara
dc.contributor.authorArmio, Reetta-Liina
dc.contributor.authorFrom, Tiina
dc.contributor.authorGoffi, Federica
dc.contributor.authorHahn, Lisa
dc.contributor.authorKaufmann, Tobias
dc.contributor.authorLaurikainen, Heikki
dc.contributor.authorMaggioni, Eleonora
dc.contributor.authorMartínez Zalacaín, Ignacio
dc.contributor.authorRuef, Anne
dc.contributor.authorDong, Mark Sen
dc.contributor.authorSchwarz, Emanuel
dc.contributor.authorSquarcina, Letizia
dc.contributor.authorAndreassen, Ole
dc.contributor.authorBellani, Marcella
dc.contributor.authorBrambilla, Paolo
dc.contributor.authorHaren, Neeltje van
dc.contributor.authorHietala, Jarmo
dc.contributor.authorLawrie, Stephen M.
dc.contributor.authorSoriano Mas, Carles
dc.contributor.authorWhalley, Heather
dc.contributor.authorTaquet, Maxime
dc.contributor.authorMeisenzahl, Eva
dc.contributor.authorFalkai, Peter
dc.contributor.authorWiegand, Ariane
dc.contributor.authorKoutsouleris, Nikolaos
dc.date.accessioned2025-09-09T13:18:46Z
dc.date.available2025-09-09T13:18:46Z
dc.date.issued2025-01-01
dc.date.updated2025-09-09T13:18:46Z
dc.description.abstractThe current biologically uninformed psychiatric taxonomy complicates optimal diagnosis and treatment. Neuroimaging-based machine learning methods hold promise for tackling these issues, but large-scale, representative cohorts are required for building robust and generalizable models. The European College of Neuropsychopharmacology Neuroimaging Network Accessible Data Repository (ECNP-NNADR) addresses this need by collating multi-site, multi-modal, multi-diagnosis datasets that enable collaborative research. The newly established ECNP-NNADR includes 4829 participants across 21 cohorts and 11 distinct psychiatric diagnoses, available via the Virtual Pooling and Analysis of Research data (ViPAR) software. The repository includes demographic and clinical information, including diagnosis and questionnaires evaluating psychiatric symptomatology, as well as multi-atlas grey matter volume regions of interest (ROI). To illustrate the opportunities offered by the repository, two proof-of-concept analyses were performed: (1) multivariate classification of 498 patients with schizophrenia (SZ) and 498 matched healthy control (HC) individuals, and (2) normative age prediction using 1170 HC individuals with subsequent application of this model to study abnormal brain maturational processes in patients with SZ. In the SZ classification task, we observed varying balanced accuracies, reaching a maximum of 71.13% across sites and atlases. The normative-age model demonstrated a mean absolute error (MAE) of 6.95 years [coefficient of determination (R2) = 0.77, P < .001] across sites and atlases. The model demonstrated robust generalization on a separate HC left-out sample achieving a MAE of 7.16 years [R2 = 0.74,P < .001]. When applied to the SZ group, the model exhibited a MAE of 7.79 years [R2 = 0.79, P < .001], with patients displaying accelerated brain-aging with a brain age gap (BrainAGE) of 4.49 (8.90) years. Conclusively, this novel multi-site, multi-modal, transdiagnostic data repository offers unique opportunities for systematically tackling existing challenges around the generalizability and validity of imaging-based machine learning applications for psychiatry.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec755785
dc.identifier.urihttps://hdl.handle.net/2445/223064
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.nsa.2024.105407
dc.relation.ispartofNeuroscience Applied, 2025, vol. 4, 105407
dc.relation.urihttps://doi.org/10.1016/j.nsa.2024.105407
dc.rightscc-by (c) Khuntia, Adyasha et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Psicologia Social i Psicologia Quantitativa)
dc.subject.classificationImatges per ressonància magnètica
dc.subject.classificationCultura participativa
dc.subject.classificationSalut mental
dc.subject.classificationDades de recerca
dc.subject.classificationCiència
dc.subject.otherMagnetic resonance imaging
dc.subject.otherParticipatory culture
dc.subject.otherMental health
dc.subject.otherResearch data
dc.subject.otherScience
dc.titleTowards collaborative data science in mental health research: The ECNP neuroimaging network accessible data repository
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
883332.pdf
Mida:
2.18 MB
Format:
Adobe Portable Document Format