Delay Equations with Non-negativity Constraints Driven by a Hölder Continuous Function of Order $\beta \in\left(\frac{1}{3}, \frac{1}{2}\right)$

dc.contributor.authorBesalú, Mireia
dc.contributor.authorMárquez, David (Márquez Carreras)
dc.contributor.authorRovira Escofet, Carles
dc.date.accessioned2024-11-18T09:00:06Z
dc.date.available2024-11-18T09:00:06Z
dc.date.issued2014
dc.date.updated2024-11-18T09:00:06Z
dc.description.abstractIn this note we prove an existence and uniqueness result of solution for multidimensional delay differential equations with normal reflection and driven by a Hölder continuous function of order $\beta \in\left(\frac{1}{3}, \frac{1}{2}\right)$. We also obtain a bound for the supremum norm of this solution. As an application, we get these results for stochastic differential equations driven by a fractional Brownian motion with Hurst parameter $\mathrm{H} \in\left(\frac{1}{3}, \frac{1}{2}\right)$.
dc.format.extent22 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec642113
dc.identifier.issn0926-2601
dc.identifier.urihttps://hdl.handle.net/2445/216547
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s11118-013-9365-6
dc.relation.ispartofPotential Analysis, 2014, vol. 41, num.1, p. 117-141
dc.relation.urihttps://doi.org/10.1007/s11118-013-9365-6
dc.rights(c) Springer Verlag, 2014
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationIntegrals estocàstiques
dc.subject.classificationCàlcul de Malliavin
dc.subject.classificationAnàlisi estocàstica
dc.subject.otherStochastic integrals
dc.subject.otherMalliavin calculus
dc.subject.otherStochastic analysis
dc.titleDelay Equations with Non-negativity Constraints Driven by a Hölder Continuous Function of Order $\beta \in\left(\frac{1}{3}, \frac{1}{2}\right)$
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
175930.pdf
Mida:
248.05 KB
Format:
Adobe Portable Document Format