Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Cerquides Bueno, Jesús et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/176619

A Conceptual Probabilistic Framework for Annotation Aggregation of Citizen Science Data

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Over the last decade, hundreds of thousands of volunteers have contributed to science by collecting or analyzing data. This public participation in science, also known as citizen science, has contributed to significant discoveries and led to publications in major scientific journals. However, little attention has been paid to data quality issues. In this work we argue that being able to determine the accuracy of data obtained by crowdsourcing is a fundamental question and we point out that, for many real-life scenarios, mathematical tools and processes for the evaluation of data quality are missing. We propose a probabilistic methodology for the evaluation of the accuracy of labeling data obtained by crowdsourcing in citizen science. The methodology builds on an abstract probabilistic graphical model formalism, which is shown to generalize some already existing label aggregation models. We show how to make practical use of the methodology through a comparison of data obtained from different citizen science communities analyzing the earthquake that took place in Albania in 2019.

Citació

Citació

CERQUIDES BUENO, Jesús, MÜLÂYIM, Mehmet oguz, HERNÁNDEZ-GONZÁLEZ, Jerónimo, SHANKAR, Amudha ravi, FERNÁNDEZ MÁRQUEZ, Jose luis. A Conceptual Probabilistic Framework for Annotation Aggregation of Citizen Science Data. _Mathematics_. 2021. Vol. 9, núm. 875. [consulta: 24 de gener de 2026]. ISSN: 2227-7390. [Disponible a: https://hdl.handle.net/2445/176619]

Exportar metadades

JSON - METS

Compartir registre