A Conceptual Probabilistic Framework for Annotation Aggregation of Citizen Science Data

dc.contributor.authorCerquides Bueno, Jesús
dc.contributor.authorMülâyim, Mehmet Oguz
dc.contributor.authorHernández-González, Jerónimo
dc.contributor.authorShankar, Amudha Ravi
dc.contributor.authorFernández Márquez, Jose Luis
dc.date.accessioned2021-04-22T10:04:08Z
dc.date.available2021-04-22T10:04:08Z
dc.date.issued2021-04-15
dc.date.updated2021-04-22T10:04:08Z
dc.description.abstractOver the last decade, hundreds of thousands of volunteers have contributed to science by collecting or analyzing data. This public participation in science, also known as citizen science, has contributed to significant discoveries and led to publications in major scientific journals. However, little attention has been paid to data quality issues. In this work we argue that being able to determine the accuracy of data obtained by crowdsourcing is a fundamental question and we point out that, for many real-life scenarios, mathematical tools and processes for the evaluation of data quality are missing. We propose a probabilistic methodology for the evaluation of the accuracy of labeling data obtained by crowdsourcing in citizen science. The methodology builds on an abstract probabilistic graphical model formalism, which is shown to generalize some already existing label aggregation models. We show how to make practical use of the methodology through a comparison of data obtained from different citizen science communities analyzing the earthquake that took place in Albania in 2019.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec711728
dc.identifier.issn2227-7390
dc.identifier.urihttps://hdl.handle.net/2445/176619
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/math9080875
dc.relation.ispartofMathematics, 2021, vol. 9, p. 875
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/761758/EU//X5gon
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/952026/EU//HumanE-AI-Net
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/872944/EU//CROWD4SDG
dc.relation.urihttps://doi.org/10.3390/math9080875
dc.rightscc-by (c) Cerquides Bueno, Jesús et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationDades massives
dc.subject.classificationCiència ciutadana
dc.subject.classificationProbabilitats
dc.subject.otherBig data
dc.subject.otherCitizen science
dc.subject.otherProbabilities
dc.titleA Conceptual Probabilistic Framework for Annotation Aggregation of Citizen Science Data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
711728.pdf
Mida:
1.11 MB
Format:
Adobe Portable Document Format