The differentiable chain functor is not homotopy equivalent to the continuous chain functor
| dc.contributor.author | Guillén Santos, Francisco | |
| dc.contributor.author | Navarro, Vicenç (Navarro Aznar) | |
| dc.contributor.author | Pascual Gainza, Pere | |
| dc.contributor.author | Roig, Agustí | |
| dc.date.accessioned | 2013-04-12T09:05:54Z | |
| dc.date.available | 2013-04-12T09:05:54Z | |
| dc.date.issued | 2009-01-01 | |
| dc.date.updated | 2013-04-12T09:05:54Z | |
| dc.description.abstract | Let $S_*$ and $S_*^\{infty}$ be the functors of continuous and differentiable singular chains on the category of differentiable manifolds. We prove that the natural transformation $i: S_*^\infty \rightarrow S_*$, which induces homology equivalences over each manifold, is not a natural homotopy equivalence. | |
| dc.format.extent | 3 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 576857 | |
| dc.identifier.issn | 0166-8641 | |
| dc.identifier.uri | https://hdl.handle.net/2445/34541 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier B.V. | |
| dc.relation.isformatof | Versió postprint del document publicat a: http://dx.doi.org/10.1016/j.topol.2008.09.005 | |
| dc.relation.ispartof | Topology and its Applications, 2009, vol. 156, num. 3, p. 658-660 | |
| dc.relation.uri | http://dx.doi.org/10.1016/j.topol.2008.09.005 | |
| dc.rights | (c) Elsevier B.V., 2009 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Topologia diferencial | |
| dc.subject.classification | Topologia algebraica | |
| dc.subject.classification | Àlgebra homològica | |
| dc.subject.other | Differential topology | |
| dc.subject.other | Algebraic topology | |
| dc.subject.other | Homological algebra | |
| dc.title | The differentiable chain functor is not homotopy equivalent to the continuous chain functor | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1