The differentiable chain functor is not homotopy equivalent to the continuous chain functor

dc.contributor.authorGuillén Santos, Francisco
dc.contributor.authorNavarro, Vicenç (Navarro Aznar)
dc.contributor.authorPascual Gainza, Pere
dc.contributor.authorRoig, Agustí
dc.date.accessioned2013-04-12T09:05:54Z
dc.date.available2013-04-12T09:05:54Z
dc.date.issued2009-01-01
dc.date.updated2013-04-12T09:05:54Z
dc.description.abstractLet $S_*$ and $S_*^\{infty}$ be the functors of continuous and differentiable singular chains on the category of differentiable manifolds. We prove that the natural transformation $i: S_*^\infty \rightarrow S_*$, which induces homology equivalences over each manifold, is not a natural homotopy equivalence.
dc.format.extent3 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec576857
dc.identifier.issn0166-8641
dc.identifier.urihttps://hdl.handle.net/2445/34541
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1016/j.topol.2008.09.005
dc.relation.ispartofTopology and its Applications, 2009, vol. 156, num. 3, p. 658-660
dc.relation.urihttp://dx.doi.org/10.1016/j.topol.2008.09.005
dc.rights(c) Elsevier B.V., 2009
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTopologia diferencial
dc.subject.classificationTopologia algebraica
dc.subject.classificationÀlgebra homològica
dc.subject.otherDifferential topology
dc.subject.otherAlgebraic topology
dc.subject.otherHomological algebra
dc.titleThe differentiable chain functor is not homotopy equivalent to the continuous chain functor
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
576857.pdf
Mida:
281.17 KB
Format:
Adobe Portable Document Format