Incorporating Alternative Polygenic Risk Scores into the BOADICEA Breast Cancer Risk Prediction Model

dc.contributor.authorMavaddat, Nasim
dc.contributor.authorFicorella, Lorenzo
dc.contributor.authorCarver, Tim
dc.contributor.authorLee, Andrew
dc.contributor.authorCunningham, Alex P.
dc.contributor.authorLush, Michael
dc.contributor.authorDennis, Joe
dc.contributor.authorTischkowitz, Marc
dc.contributor.authorDownes, Kate
dc.contributor.authorHu, Donglei
dc.contributor.authorHahnen, Eric
dc.contributor.authorSchmutzler, Rita K.
dc.contributor.authorStockley, Tracy L.
dc.contributor.authorDowns, Gregory S.
dc.contributor.authorZhang, Tong
dc.contributor.authorChiarelli, Anna M.
dc.contributor.authorBojesen, Stig E.
dc.contributor.authorLiu, Cong
dc.contributor.authorChung, Wendy K.
dc.contributor.authorPardo Muñoz, Mònica
dc.contributor.authorFeliubadaló i Elorza, Maria Lídia
dc.contributor.authorBalmaña, Judith
dc.contributor.authorSimard, Jacques
dc.contributor.authorAntoniou, Antonis C.
dc.contributor.authorEaston, Douglas F.
dc.date.accessioned2023-07-19T11:36:04Z
dc.date.available2023-07-19T11:36:04Z
dc.date.issued2023-01-13
dc.date.updated2023-06-21T13:36:53Z
dc.description.abstractBackground: The multifactorial risk prediction model BOADI-CEA enables identification of women at higher or lower risk of developing breast cancer. BOADICEA models genetic susceptibility in terms of the effects of rare variants in breast cancer susceptibility genes and a polygenic component, decomposed into an unmeasured and a measured component -the polygenic risk score (PRS). The current version was developed using a 313 SNP PRS. Here, we evaluated approaches to incorporating this PRS and alternative PRS in BOADICEA.Methods: The mean, SD, and proportion of the overall polygenic component explained by the PRS (a2) need to be estimated. a was estimated using logistic regression, where the age-specific log-OR is constrained to be a function of the age-dependent polygenic relative risk in BOADICEA; and using a retrospective likelihood (RL) approach that models, in addition, the unmeasured polygenic component.Results: Parameters were computed for 11 PRS, including 6 variations of the 313 SNP PRS used in clinical trials and imple-mentation studies. The logistic regression approach underestimates a, as compared with the RL estimates. The RL a estimates were very close to those obtained by assuming proportionality to the OR per 1 SD, with the constant of proportionality estimated using the 313 SNP PRS. Small variations in the SNPs included in the PRS can lead to large differences in the mean.Conclusions: BOADICEA can be readily adapted to different PRS in a manner that maintains consistency of the model.Impact : The methods described facilitate comprehensive breast cancer risk assessment.
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn1538-7755
dc.identifier.pmid36649146
dc.identifier.urihttps://hdl.handle.net/2445/200906
dc.language.isoeng
dc.publisherAmerican Association for Cancer Research (AACR)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1158/1055-9965.EPI-22-0756
dc.relation.ispartofCancer Epidemiology, Biomarkers & Prevention, 2023, vol. 32, num. 3, p. 422-427
dc.relation.urihttps://doi.org/10.1158/1055-9965.EPI-22-0756
dc.rightscc by (c) Mavaddat, Nasim et al, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationCàncer de mama
dc.subject.classificationFactors de risc en les malalties
dc.subject.otherBreast cancer
dc.subject.otherRisk factors in diseases
dc.titleIncorporating Alternative Polygenic Risk Scores into the BOADICEA Breast Cancer Risk Prediction Model
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
epi-22-0756.pdf
Mida:
631.51 KB
Format:
Adobe Portable Document Format