On the proof of the upper bound theorem

dc.contributor.advisorZarzuela, Santiago
dc.contributor.authorDediu, Catalin
dc.date.accessioned2018-03-27T08:25:51Z
dc.date.available2018-03-27T08:25:51Z
dc.date.issued2017-09-09
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2017, Director: Santiago Zarzuelaca
dc.description.abstract[en] Let $\Delta$ be a triangulation of a $(d - 1)$-dimensional sphere with $n$ vertices. The Upper Bound Conjecture (UBC for short) gives an explicit bound of the number of $i$-dimensional faces of $\Delta$. This question dates back to the beginning of the 1950’s, when the study of the efficiency of some linear programming techniques led to the following problem: Determine the maximal possible number of $i$-faces of d-polytope with $n$ vertices. The first statement of the UBC was formulated in 1957 by Theodore Motzkin. The original result state that the number of $i$-dimensional faces of a $d$-dimensional polytope with n vertices are bound by a certain explicit number $f i (C(n, d))$ where $C(n, d)$ is a cyclic polytope and $f_{i}$ denotes the number of $i$-dimensional faces of the simplex. We say that $P$ is a polytope if it is the convex hull of a finite set of points in $\mathbb{R}^{d}$. Moreover, we say that $C(n, d)$ is a cyclic polytope if it is the convex hull of n distinct points on the moment curve $(t, t^{2},..., t{^d})$, $-\infty<t<\infty$. With this notation the Upper Bound Conjecture (for convex polytopes) states that cyclic polytope maximizes the number of $i$-dimensional faces among all polytopes.ca
dc.format.extent58 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/121133
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Catalin Dediu, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationÀlgebra commutativacat
dc.subject.classificationAnells commutatiuscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationGeometria combinatòriaca
dc.subject.otherCommutative algebraeng
dc.subject.otherCommutative ringseng
dc.subject.otherMaster's theseseng
dc.subject.otherCombinatorial geometryen
dc.titleOn the proof of the upper bound theoremca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
829.89 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria