Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/122953
Organ Segmentation in Poultry Viscera Using RGB-D
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.
Matèries
Matèries (anglès)
Citació
Citació
PHILIPSEN, Mark philip, VELLING DUEHOLM, Jacob, JØRGENSEN, Anders, ESCALERA GUERRERO, Sergio, MOESLUND, Thomas baltzer. Organ Segmentation in Poultry Viscera Using RGB-D. _Sensors_. 2018. Vol. 18(1), núm. 117. [consulta: 25 de gener de 2026]. ISSN: 1424-8220. [Disponible a: https://hdl.handle.net/2445/122953]