Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Philipsen, Mark Philip et al., 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/122953

Organ Segmentation in Poultry Viscera Using RGB-D

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.

Citació

Citació

PHILIPSEN, Mark philip, VELLING DUEHOLM, Jacob, JØRGENSEN, Anders, ESCALERA GUERRERO, Sergio, MOESLUND, Thomas baltzer. Organ Segmentation in Poultry Viscera Using RGB-D. _Sensors_. 2018. Vol. 18(1), núm. 117. [consulta: 25 de gener de 2026]. ISSN: 1424-8220. [Disponible a: https://hdl.handle.net/2445/122953]

Exportar metadades

JSON - METS

Compartir registre