Organ Segmentation in Poultry Viscera Using RGB-D

dc.contributor.authorPhilipsen, Mark Philip
dc.contributor.authorVelling Dueholm, Jacob
dc.contributor.authorJørgensen, Anders
dc.contributor.authorEscalera Guerrero, Sergio
dc.contributor.authorMoeslund, Thomas Baltzer
dc.date.accessioned2018-06-14T11:46:52Z
dc.date.available2018-06-14T11:46:52Z
dc.date.issued2018-01-03
dc.date.updated2018-06-14T11:46:53Z
dc.description.abstractWe present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.
dc.format.extent15 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec675064
dc.identifier.issn1424-8220
dc.identifier.pmid29301337
dc.identifier.urihttps://hdl.handle.net/2445/122953
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/s18010117
dc.relation.ispartofSensors, 2018, vol. 18(1), num. 117
dc.relation.urihttps://doi.org/10.3390/s18010117
dc.rightscc-by (c) Philipsen, Mark Philip et al., 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationOcells
dc.subject.classificationXarxes neuronals (Neurobiologia)
dc.subject.otherBirds
dc.subject.otherNeural networks (Neurobiology)
dc.titleOrgan Segmentation in Poultry Viscera Using RGB-D
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
675064.pdf
Mida:
2.49 MB
Format:
Adobe Portable Document Format