Organ Segmentation in Poultry Viscera Using RGB-D
| dc.contributor.author | Philipsen, Mark Philip | |
| dc.contributor.author | Velling Dueholm, Jacob | |
| dc.contributor.author | Jørgensen, Anders | |
| dc.contributor.author | Escalera Guerrero, Sergio | |
| dc.contributor.author | Moeslund, Thomas Baltzer | |
| dc.date.accessioned | 2018-06-14T11:46:52Z | |
| dc.date.available | 2018-06-14T11:46:52Z | |
| dc.date.issued | 2018-01-03 | |
| dc.date.updated | 2018-06-14T11:46:53Z | |
| dc.description.abstract | We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features. | |
| dc.format.extent | 15 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 675064 | |
| dc.identifier.issn | 1424-8220 | |
| dc.identifier.pmid | 29301337 | |
| dc.identifier.uri | https://hdl.handle.net/2445/122953 | |
| dc.language.iso | eng | |
| dc.publisher | MDPI | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.3390/s18010117 | |
| dc.relation.ispartof | Sensors, 2018, vol. 18(1), num. 117 | |
| dc.relation.uri | https://doi.org/10.3390/s18010117 | |
| dc.rights | cc-by (c) Philipsen, Mark Philip et al., 2018 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Ocells | |
| dc.subject.classification | Xarxes neuronals (Neurobiologia) | |
| dc.subject.other | Birds | |
| dc.subject.other | Neural networks (Neurobiology) | |
| dc.title | Organ Segmentation in Poultry Viscera Using RGB-D | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1