Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/178203

A Synthetic penalized logitboost to model mortgage lending with imbalanced cata

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Most classical econometric methods and tree boosting based algorithms tend to increase the prediction error with binary imbalanced data. We propose a synthetic penalized logitboost based on weighting corrections. The procedure (i) improves the prediction performance under the phenomenon in question, (ii) allows interpretability since coefficients can get stabilized in the recursive procedure, and (iii) reduces the risk of overfitting. We consider a mortgage lending case study using publicly available data to illustrate our method. Results show that errors are smaller in many extreme prediction scores, outperforming a number of existing methods. Our interpretations are consistent with results obtained using a classic econometric model.

Citació

Citació

PESANTEZ-NARVAEZ, Jessica, GUILLÉN, Montserrat, ALCAÑIZ, Manuela. A Synthetic penalized logitboost to model mortgage lending with imbalanced cata. _Computational Economics_. 2021. Vol. 57, núm. 1, pàgs. 281-309. [consulta: 9 de gener de 2026]. ISSN: 0927-7099. [Disponible a: https://hdl.handle.net/2445/178203]

Exportar metadades

JSON - METS

Compartir registre