Development of an Automatic Pipeline for Participation in the CELPP Challenge

dc.contributor.authorMiñarro-Lleonar, Marina
dc.contributor.authorRuiz-Carmona, Sergio
dc.contributor.authorAlvarez-Garcia, Daniel
dc.contributor.authorSchmidtke, Peter
dc.contributor.authorBarril Alonso, Xavier
dc.date.accessioned2022-12-13T09:00:15Z
dc.date.available2022-12-13T09:00:15Z
dc.date.issued2022-04-26
dc.date.updated2022-12-13T09:00:15Z
dc.description.abstractThe prediction of how a ligand binds to its target is an essential step for Structure-Based Drug Design (SBDD) methods. Molecular docking is a standard tool to predict the binding mode of a ligand to its macromolecular receptor and to quantify their mutual complementarity, with multiple applications in drug design. However, docking programs do not always find correct solutions, either because they are not sampled or due to inaccuracies in the scoring functions. Quantifying the docking performance in real scenarios is essential to understanding their limitations, managing expectations and guiding future developments. Here, we present a fully automated pipeline for pose prediction validated by participating in the Continuous Evaluation of Ligand Pose Prediction (CELPP) Challenge. Acknowledging the intrinsic limitations of the docking method, we devised a strategy to automatically mine and exploit pre-existing data, defining-whenever possible-empirical restraints to guide the docking process. We prove that the pipeline is able to generate predictions for most of the proposed targets as well as obtain poses with low RMSD values when compared to the crystal structure. All things considered, our pipeline highlights some major challenges in the automatic prediction of protein-ligand complexes, which will be addressed in future versions of the pipeline. Keywords: D3R; automated pipeline; binding mode prediction; docking; pocket detection.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec725389
dc.identifier.issn1661-6596
dc.identifier.urihttps://hdl.handle.net/2445/191531
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/ijms23094756
dc.relation.ispartofInternational Journal of Molecular Sciences, 2022, vol. 23, num. 9, p. 4756
dc.relation.urihttps://doi.org/10.3390/ijms23094756
dc.rightscc-by (c) Miñarro-Lleonar, Marina et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)
dc.subject.classificationDisseny de medicaments
dc.subject.classificationLligands (Bioquímica)
dc.subject.classificationDesenvolupament de medicaments
dc.subject.otherDrug design
dc.subject.otherLigands (Biochemistry)
dc.subject.otherDrug development
dc.titleDevelopment of an Automatic Pipeline for Participation in the CELPP Challenge
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
725389.pdf
Mida:
5.04 MB
Format:
Adobe Portable Document Format