Racionalitat i monotonia en jocs cooperatius: possibilitats i impossibilitats

dc.contributor.advisorVives i Santa Eulàlia, Josep, 1963-
dc.contributor.advisorCalleja, Pere
dc.contributor.authorRosselló Matamalas, Joan
dc.date.accessioned2022-06-20T09:54:06Z
dc.date.available2022-06-20T09:54:06Z
dc.date.issued2022-01-24
dc.descriptionTreballs Finals del Doble Grau d'Administració i Direcció d'Empreses i de Matemàtiques, Facultat d'Economia i Empresa i Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Curs: 202-2022, Tutor: Josep Vives i Santa Eulàlia i Pere Callejaca
dc.description.abstract[en] A single-valued solution for cooperative games suggest how to allocate what all agents can get if they cooperate. In this work, we analyze which of the most important solutions satisfy certain rationality and/or monotonicity properties. In particular we study the behavior of well-known solutions such as the Shapley value, the prenucleolus, and the per-capita prenucleolus regarding the core selection property and monotonicity properties such as coalitional monotonicity. Core selection imposes that whenever it is possible, the recommendation made by a solution should not give incentives to individual agents or any coalition to break cooperation. It is for this reason that we consider it as a rationality property. On the other hand, coalitional monotonicity requires that as long as one coalition becomes stronger (and the value of the rest of coalitions does not vary), no member of the coalition is strictly worse off. We show how the imposition of these two properties will make it impossible to find a solution that satisfies both. Next, we relax the monotonicity property to aggregate monotonicity. This property demands that if the coalition of all players becomes stronger (while the value of the rest of coalitions remains the same), no agent is strictly worse off. In this case, not only the perapita prenucleolus satisfies both properties, but also a whole set of solutions does, of which we study its geometry. Finally, we define a new monotonicity property, weak coalitional monotonicity, and we leave the door open to a future study of whether or not it is compatible with core selection.ca
dc.format.extent56 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/186805
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Joan Rosselló Matamalas, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Administració i Direcció d’Empreses i Matemàtiques (Doble Grau)
dc.subject.classificationJocs cooperatius (Matemàtica)
dc.subject.classificationTeoria de jocs
dc.subject.classificationPresa de decisions
dc.subject.classificationTreballs de fi de grau
dc.subject.otherCooperative games (Mathematics)
dc.subject.otherGame theory
dc.subject.otherDecision making
dc.subject.otherBachelor's theses
dc.titleRacionalitat i monotonia en jocs cooperatius: possibilitats i impossibilitatsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_rossello_matamalas_joan.pdf
Mida:
958.68 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria